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Abstract 
An overview of science papers in the field of machine diagnosis has exposed increasing efforts in 

developing accurate and reliable engine health monitoring systems. Attempts have been made in both 
diagnostics and prediction of system faults. Essential limitations of the standard monitoring system are 
discussed in this paper as well as arguments for implementation of the Advanced Gas Turbine Health 
Monitoring Systems. Examples of implementation are discussed and a comparison between “Enhanced 
Arrangement” and “Standard Arrangements” is carried out. The individual system components are 
implemented today using very different methods. Performance degradation of gas turbines is described here 
with an approach of Condition Based Maintenance and it was shown how the classification method can help 
to improve equipment operation. The review of signal processing methods was carried out to present 
strengths and shortcomings of individual methods.  
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ZAAWANSOWANY SYSTEM MONITOROWANIA STANU TECHNICZNEGO  

W TURBINACH GAZOWYCH  
  

Streszczenie  
Przegląd literatury w dziedzinie diagnostyki maszyn wykazuje duże zainteresowanie 

środowiska naukowego opracowaniem niezawodnych i precyzyjnych metod oceny stanu 
technicznego napędów turbinowych. Prace te mają najczęściej na celu opracowanie systemów 
służących do bieżącej diagnostyki uszkodzeń pojawiających się podczas pracy jak i 
prognozowania przyszłych defektów. W artykule przeprowadzono ocenę najczęściej stosowanych 
metod diagnostycznych jak również omówiono zastosowanie „Zaawansowanego systemu 
monitorowania stanu technicznego turbin gazowych”. Przedstawione zostało porównanie 
standardowego i zaawansowanego układu diagnostyczno-sterującego. Indywidualne metody 
diagnostyczne zostały opisane wraz z przykładami zastosowania. Wykazano, że spadek 
sprawności turbiny gazowej jest ściśle związany z jej stanem technicznym, który może być stale 
monitorowany. Oceniono również wpływ metod klasyfikacji uszkodzeń na wykrywalność stopnia 
degradacji. 

   
Słowa kluczowe: monitorowanie, turbiny gazowe, wibroakustyka, sieci neuronowe, modele predykcyjne 

  
1. INTRODUCTION  
  

Gas turbines operate on the Brayton’s 
thermodynamic cycle where air is compressed by 
an axial or a centrifugal compressor, and fuel is 
added which is then burnt in the combustor. The 
power turbine extracts work from the expanding 
gases propelling both the compressor and the shaft. 
Power turbine’s work is used to drive compressor, 
generator, pump, etc. The main components of a 
gas turbine are: compressor, combustor and power 
turbine. They can be seen on a cutaway of the cold-
end drive gas turbine presented in Fig. 1. 

Gas turbines are widely used in industrial 
applications due to many advantages over other 
technologies such as: high reliability and 

availability, wide power range, clean energy 
production, low carbon oxides and nitrogen oxides 
emissions, fuel flexibility, exhaust gases can be 
reused for other processes, dense modular design, 
high power density, short construction time, low 
cost of generated power and short start-stop cycle 
time. These advantages over other technologies 
have led to a surge in new installations over the last 
couple of decades. There has been much progress 
made in gas turbine technologies. The pursuit of 
higher efficiency is driven by a higher compression 
ratio and increased turbine inlet temperature: 
ceramic coatings, superalloys, single crystal 
technology. Higher efficiency should go hand in 
hand with increased reliability and availability. 
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Fig. 1. Saturn 20 Gas Turbine from 
https://mysolar.cat.com 

2. ADVANCED GAS TURBINES HEALTH 
MONITORING ALGORITHM 

 
The term Advanced Gas Turbine Health 

Monitoring System is viewed in this paper as a 
system that monitors a machine and detects faults 
and predicts the performance degradation. Data 
mining is followed by performance evaluation and 
abnormal operation detection in search of pre-
failure symptoms. To perform the above functions 
effectively, the following requirements should be 
met [3]: 
• system should be automated as much as possible 

in monitoring, system analysis and supporting 
decision making; 

• robust against noisy signal and faulty 
information; 

• wide range of detectable faults and adjustability 
to newly discovered faults which may not be 
initially reported; 

• use existing instruments or as few new ones as 
possible; 

• flexible, modular and open architecture 
allowing an easy adaptation to operator needs; 

• user-friendliness so that unskilled personnel can 
use it with minimum training. 
Additionally, the following elements must be 

implemented: 
• acquisition of measurement data; 
• evaluation of data to discard unreliable and 

faulty sensor readings; 
• data processing to derive useful diagnostics 

information; 
• management of historic data to maintain records 

of valuable information. 
AGTHMS should monitor various parameters 

simultaneously such as Gas Path Analysis (GPA), 
vibration level, oil debris detection and engine 
actuators. A combination of different classifiers can 
be employed to improve fault verification. For 
example, in Fig. 2, high vibration level combined 

with oil debris low and high lube oil’s differential 
temperature (difference between lube oil supply and 
drain bearing temperature) will execute a shutdown 
command confirming the abnormal bearing 
operation. Individual readings could give a false 
indication due to sensor or controller malfunction; 
however a combination of more than one readings 
can improve the decision-making algorithm. 
Merging information from different instruments 
will reduce the number of false trip alarms caused 
by a sensor malfunction. Moreover, equipment 
abnormalities can be detected before they develop 
into failure. 

 
Fig. 2. Example of combine decision making algorithm 

Gas turbines often utilize redundant sensors for 
monitoring critical parameters. However, this 
increases overall package cost and adds complexity 
to both electrical and mechanical systems. With 
AGTHMS it can be possible to monitor engine 
sensor health status indirectly by taking advantage 
of other readings. The simple example can be found 
in relationship between shaft’s rotational speed and 
the first harmonic of the spectrum analysis from a 
proximity probe. In the example shown in Fig. 3, 
the first harmonic has a frequency of 167 Hz, 
corresponding to a rotational speed of 10,000 
revolutions per minute. When both the engine 
bearing and the sensor are healthy, readings should 
correlate but in case they do not a possible 
malfunction could be present and an alarm or 
shutdown should be initiated. 

Analysing the vibration spectrum and 
comparing them with readings from a different 
sensor, such as a speed probe, can bring the 
following benefits: 
• Sensor cross-check – increased system integrity 

level without the need for redundant sensors;  
• Gas turbine alarm/shutdown counteraction is 

based on several rather than on a single reading.
 
3. PROBLEM DEFINITION 

 
A typical arrangement of the main components 

in the engine health monitoring system usually 
takes into account monitoring such parameters as 
temperatures, pressures, flow parameters, vibration 
level and speed. These are passed to a digital 
controller which contains a set of pre-defined rules 
(i.e. If value x is less than y then engine “OK” else 
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send an alarm signal or shutdown engine safely). 
This is referred to as “Standard arrangement” in 
Fig. 4. It is sufficient for majority of engine 
operation. The fast digital controller can act upon 
rapid changing conditions allowing safe and 
efficient operation of the engine. The main 
advantages of this condition-based control are: an 
implementation simplicity and a straightforward 
modification procedure when necessary. However, 
it often lacks a prognosis value and a 
comprehensive diagnostics functionality as the 
majority of data which are analysed based on the 
pre-defined “IF-THEN” rules. 

 
Fig. 3. Vibration spectrum measured using  

a displacement probe 

More advanced diagnostics and prognostics 
require a new approach. “Enhanced arrangement” 
shown in Fig. 4, provides additional signal 
processing solely dedicated to engine health and 
performance monitoring. The key elements in this 
system are: Observer, Signal Decomposition & 
Conditioning and Condition Assessment. Signal 
Decomposition & Conditioning block can allow 
advanced processing of signals registered by 
vibration and displacement sensors. This pre-
processing of raw data allows for an extraction of 
interesting features for a user in such a way that an 
incipient fault can be detected and acted upon 
before it develops into a failure. A further 
discussion on this subject can be found in part 
Vibration Monitoring of this paper. 

The key feature of Enhanced Arrangement is to 
allow the self-condition assessment and do it 
effectively. Health classification algorithm, 
imbedded in Condition Assessment block, requires 
a residual between the measured and the predicted 
outputs. This forecast can be archived by Observer 
which consists of regression methods accurately 
predicting expected engine outputs for a given 
operating point (engine speed, load, temperature, 
etc.). Classification methods can employ expert 
knowledge to correctly label symptoms to a 
potential problem and make decision: whether to or 
not to continue engine operation, adjust setpoints, 
inform operator or shut down the engine. 

 

 

 
Fig. 4. AGTHMS Block Diagram 

4. OPERATION ADJUSTMENT 
 

The operation of a typical industrial gas turbine 
will be governed by a set of “IF-THEN” rules and 
tunable constants. These will vary engine to engine 
as no customer site is identical and the 
manufacturing tolerance of gas turbines require a 
number of specific settings to be tailored to 
individual units. These can include: inlet guide vane 
or bleed valve range, fuel starting schedule, fuel 
pressure at burner, engine shaft speed or pilot to 
main ratio for a low NOx emission engine and 
many more. A control system for a gas turbine 
should include parameters correction for a variation 
of an inlet temperature or a barometric pressure. 
This allows an on-line adjustment to the engine 
operation. However, in “Standard Arrangement”, 
there are limitations in the self-adjusting capability 
as the control system uses “IF-THEN” rules. The 
self-adjusting ability of “Enhanced Arrangement” 
can be significantly increased. For example, a 
customer has received a different type of diesel fuel 
and now his engine is struggling to start on his 
liquid. Furthermore, the situation takes place in a 
remote location and the gas turbine manufacturing 
expert cannot mobilise himself on very short notice. 
In Fig. 6a the engine starts on liquid but fails to 
reach the minimum temperature in a defined time 
frame. An expert would probably adjust fuel 
command schedule for more aggressive behaviour. 
However, the personnel on-site are not qualified to 
carry out such modifications. AGTHMS could 
perform the system's auto-diagnostics as per Fig. 5. 
In the first stage, Condition Assessment block 
receives “Engine Failed to Reach Temperature-
Shutdown” alarm.  
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Fig. 5. Gas Turbine Fails to Ignite Troubleshooting using 
AGTHMS 

The algorithm performs a basic condition check 
on the actuators to eliminate their malfunction. In 
the next step of the algorithm, the occurrence of a 
certain number of failed start attempts is required 
before classifier can be triggered. In this example, 
two main causes are rectified with a probability of 
72% and 28% respectively. The algorithm takes a 
decision to change fuel ramp and another start is 
initiated as per Figure 5b. This time engine exceeds 
the maximum temperature setpoint during start-up. 
The fuel ramp is reduced and the engine starts 
successfully (see Figure 5c). 
5. RECALL VS PRECISION IN FAULT 

CLASSIFICATION 
 

Condition Assessment block is expected to 
accurately distinguish abnormal, leading to faults 
symptoms from the false ones. A selected classifier 
will usually have a trade-off between a high recall 
or a precision as per Fig. 7. These two evaluation 
classifiers can be defined as Eq. (1) and (2). 

 

 (1) 

 
 

 

 (2) 

A high recall will lead to more false alarm 
(lower precision) detections. Making the system 
more sensitive to unusual operating conditions. It 
will be expected from this classifier to detect the 
majority of possible faults at expense of spurious  
 

 
 

a) Failed to Reach Temperature 

b) Over Temperature During Start-up 
 

c) Successful start  
Fig. 6. Gas Turbine Fuel Adjustment for Start-up 

faults. On the other hand, a high precision classifier 
will be less sensitive to abnormal (lower recall) 
states but less prompt to a false failure detection. 
Depending on the fault scenario the high precision 
classifier (Fig. 7a) can be selected to make 
instantaneous counteraction such as engine 
shutdowns as it is going to be more robust to noise 
than high recall. In cases like the one shown in Fig. 
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7b, the high recall classifier can be effective in 
detecting symptoms, otherwise it would be missed 
by the precision focused classifier, therefore, the 
output from it should be analysed further by another 
algorithm or a system operator/an expert. 
Symptoms classified with high recall could be used 
with “Combined decision making” algorithm (see 
Fig. 2) where more than one cause is required for a 
counteraction. 
 
6. PROGNOSTICS AND DIAGNOSTICS 

 
From the above example, the main two 

functions of the AGTHMS are the diagnostics, 
which can be referred to as a function that detects 
present and past abnormalities, and the 
prognostics, which allows an estimation of the 
engine wear & tear and a prediction of faults [1]. 

 
6.1. Prognostics 

The capability to predict the health of a machine 
component over time is at the foundation of 
Condition Based Maintenance. It relies on the 
current health assessment and uses this information 
to plot the degradation curve of a component 
allowing for time to failure prediction [9]. The 
prognostic methods can be classified as data-driven 
and model-based. 

• Data-driven prognostics 
This approach relies on the assumption that 

statistical characteristics of the data are relatively 
unchanged unless the malfunction event occurs in 
the system [10-11]. Prognostics uses this approach 
for a statistical and learning technique from the 
theory of pattern recognition. 

• Model-based prognostics 
Using an accurate mathematical model, this 

check can be performed between its outputs and 
measurements from sensors. Residuals are 
calculated and their values are used to detect signs 
of the system's malfunction. However, this is more 
effective for smaller systems as an analytical 
approach requires a detailed quantitative 
mathematical model. For larger systems obtaining it 
can be expensive and time consuming [10]. 

• Knowledge-based prognostics 
This type of prognostics can be made based on a 
causal analysis, expert systems and pattern 
recognition [10]. The first one is based on 
modelling fault-symptom relationships. Expert 
system can be formulated as IF-THEN rules, which 
mimics a troubleshooting that is done by an 
experienced engineer not requiring him to be 
present for consultation. 

 
 

 
Fig. 7. Fault classifiers configuration 

 
6.2. Diagnostics 

This can be related to fault, abnormality or 
failure detection. The AGTHMS should allow an 
incipient fault detection. The severity of a fault will 
usually increase over time with the equipment 
usage. An early root cause analysis can reduce the 
impact of a fault on the system’s operation. 
Detecting signs of the system's malfunction at an 
early stage can be used not only to plan an earlier 
part replacement, but also to change from the 
operation method. It can help to minimize the risk 
of an abnormality developing into a catastrophic 
failure at an early stage of the operation. For 
example, if the gearbox gear's excessive wear is 
detected using the vibration analysis the control 
system can reduce work extracted from the shaft 
which reduces the risk of a catastrophic failure of 
the gearbox as gears will work at lower forces. This 
may give the user extra time to order a replacement 
part and schedule an equipment shutdown for 
overhaul. 
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7. CONDITION BASED MAINTENANCE 
 

The concept of a condition based maintenance is 
well known in industry [2]. It proposes a 
maintenance regime based on the equipment 
condition rather than on the hourly operation 
schedule. Engine performance will deteriorate over 
time reducing the amount of work that can be 
extracted from the shaft. This will happen due to 
the reduced compressor efficiency. Air mass flow 
will decrease at designed compressor speed because 
of engine degradation. Sources of degradation in 
the engines are well known [5–7] (fouling, erosion, 
hot corrosion, internal liner surface cracking, 
increase in the tip and seal clearance, 
contamination, plugging of the injector and the 
cooling holes). The velocity of these processes will 
be different depending on the manufacturing 
tolerance and is strongly associated with the engine 
operating conditions such as the atmospheric 
conditions and the engine’s operation regime (full 
or partial load, frequency of start & stop cycles, 
type and quality of fuel). These variables would 
mean that degradation curves of two similar 
engines will never be identical and the maintenance 
based on the operation hours of the machinery is 
inaccurate, exposing user to avoidable costs, 
downtime and finally a reduced production. From 
the user's perspective, too frequent preventive 
maintenance inspections on the equipment can also 
have a negative effect on reliability [4] due to 
maintenance-induced faults.  
The main advantages of this approach are a reduced 
operation cost and a higher availability as it allows 
operator to better plan maintenance.  

A similar method of monitoring gas turbine 
performance can be applied to other equipment 
such as actuators if a sufficient number of sensors is 
available. Valves can be condition monitored not 
only to confirm if open/close transition is made in a 
designed time period but also to detect wear by 
establishing the trajectory of degradation 
(performance-versus-time plot) [1]. A valve used 
for the fuel flow control can be monitored for a 
deposit build-up due to impure fuel. This will affect 
flow thereby monitoring the pressure drop on this 
valve at a given percentage opening. If this relation 
deviates, too great an early scheduled overhaul 
should be performed before the valve fails. 

 
7.1. Gas Path Analysis 

This common method in evaluating AGTHMS 
relies on a thermodynamic analysis of the gas path 
and of the energy balance. Using existing sensors 
for: air/gas flow, atmospheric pressure, 
intake/exhaust temperature, combustion 
temperature spread, shaft’s rotational speed and 
power generated on the shaft. This information 
could be used to detect: ineffective operation, 
compressor and turbine fouling, foreign object 
damage, filter clogging, plugged nozzles, worn 
seals, excessive blade and nozzles tip clearance. 

This is based on an assumption that most fault in a 
gas turbine will show up or leave signature in the 
performance of the component exposed to the 
air/gas flow passing through the engine [1].  

 
7.2. Direct analysis of thermodynamic data 

The first step of the analysis is to observe the 
engine’s output data under normal operating 
conditions at given speed and power [13]. The 
second step is to calculate deviations of the 
readings over time, providing both the magnitude 
and the rate of changes. The greatest advantage of 
this method is its straightforward implementation; 
however, this approach can help to rectify only the 
previous known faults. To overcome this drawback 
an additional implementation of the engine model, 
which has a fault simulation signature, is suggested. 

 
7.3. Adaptive simulation of the performance of a 

gas turbine 
Due to assembly or manufacture tolerances 

different engines of the same model will exhibit 
differences in their performance. Engine 
manufacture will guarantee minimum power and 
efficiency at ISO 3977-2 standard (temperature 
15°C, relative humidity 60% and ambient pressure 
at sea level). The authors of paper [14] propose an 
algorithm which calculates weight coefficients by 
comparing estimated values from analytical 
equations and engine readings. These coefficients 
are used for the first engine model and, later, by 
comparing the weight coefficient's rate of changes, 
allow monitoring the engine performance. Straight 
model (without adaptive coefficients) provides 
unreliable reading unlike the adaptive one. 

 
7.4. Statistical regression 

A nonlinear GPA method has been developed 
12 to predict degradation of a gas turbine. This 
method employs statistical historical data from the 
engine performance to establish a degradation 
curve. It allows evaluating the current turbine's 
health as well as predicting its future health. 

7.5. Model-based estimations 
The Kalman filter (KF) algorithm can be 

suitable for estimating the engine state accurately 
15. Using a feedback from the system outputs nulls 
the differences between the measurements and 
estimated values. Using the KF algorithm is an 
effective way to monitor engine performance 
degradation. 

Limitations of this method are related to degree-
of-freedom where the number of estimated 
parameters is greater than the number of 
independent measurements [1]. Production engine 
will have limited number of measurements done by 
sensors therefore accurate fault source 
identification is difficult. However, to overcome 
this problem, an approximation technique can be 
used. Another limitation of KF is a linear nature 
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allowing an accurate estimation of a nonlinear 
system in a narrow linearized region.  

A comparison was carried out by the authors of 
[24] between the KF and the Artificial Neural 
Network for the isolation of a single fault. Both 
methods achieve a good fault isolation accuracy 
with a slight bias towards KF, where the linear 
model is available with a reasonably accurate 
relation between inputs and output. The main 
advantage of KF over ANN is a simple 
reconfiguration to work on different measurement 
suites and with different fault configurations. 

 
7.6. Artificial neural network 

Artificial Neural Networks (ANN) have been a 
powerful tool in estimating gas turbines 
performance [17–27] and fault detection due to 
their ability to model highly nonlinear relationship 
such as fuel flow and shaft speed dynamics. They 
prove to have excellent approximation capabilities. 
An ANN with one hidden layer of sigmoidal or 
hyperbolic tangent activation function and output 
layer of linear unit is capable of approximating any 
continuous function [16]. Their excellent regression 
model ability can be used for an observer model as 
a part of the AGTHMS. On the other hand, where 
abnormal symptoms are found an ANN can be 
employed to classify the type of problem. 

The authors of [17] prove that an ANN can be 
trained to have over 90% success rate in finding 15 
different faults of Pratt and Whitney PW4000 
engine. The neural network's ability to correctly 
predict output variables without any knowledge of 
equations governing the main phenomena from the 
system is investigated in [18]. A number of 
interesting conclusions are drawn in [19] where 
authors are using ANN techniques to simulate a 
plant with a cogeneration gas turbine unit. 
Providing effective plant optimization tools helps to 
reduce operation costs. In this paper, the ANN 
proves a good accuracy of estimation but also better 
calculation performance over the physical 
simulator. A stress control method employing an 
ANN is investigated in [20]. Data required to carry 
out network training in this instance is obtained 
from a fine element model as stress measurements 
on the turbine rotors are not available. The 
component or sensor fault diagnostics using an 
ANN is presented in [22]. The network exhibits a 
potential to be implemented as a part of the gas 
turbine monitoring and diagnostics system. 

The advantage of an ANN utilized as observer 
(as shown in Fig. 4) over Standard arrangement 
can lay in its ability in teaching the complete 
relation between the engine operation and the 
actuators' states for a given operating state. For 
instance, a digital controller will monitor if the 
system completes the valve check during a start-up 
sequence, except it will only check a pre-defined 
conditions. Where ANN can be taught completely 
to work as a gas turbine operator. For example, 
which valve, switch levels etc., have to be set at a 

given operating point or a given period of time. 
Any deviation from a previously learned sequence 
can be detected, significantly reducing the 
troubleshooting time. 

The main drawback of using this method in 
modelling a gas turbine is in their “black-box” 
nature; lack of transparency in human-
understandable term [27]. In the “white-box” model 
where analytical equations describe the coefficient 
parameters correspond to the process and can be 
easily associated with the performance degradation. 
An optimal structure of the neural network for a 
given problem is generally unknown. Criteria for 
validating and training an ANN are generally not 
defined [25]. An inappropriate teaching method can 
provide poor generalization performance of the 
network. However, in recent years there has been 
much effort put in developing better training 
methods. The well-known back propagation 
algorithm, which utilizes a gradient-based 
algorithm, can be replaced by a learning algorithm 
called Extreme Learning Machine [26]. In this 
method, input weights and hidden biases are 
randomly selected but output weights are calculated 
by Moore-Penrose generated inverse. This method 
has proved to have better performance than the BP 
algorithm. 

During the network design process there is a list 
of issues which needs to be carefully addressed 
such as data leakage, model-under or overfitting.  

 
7.7. Fusion systems 

These methods use more than one approach to 
deal with data analysis in order to combine straights 
from different methods simultaneously minimizing 
their drawbacks. A combination of a neural network 
and the fuzzy logic is demonstrated in [27]. In this 
publication, a much better known nature of the 
fuzzy logic is combined with the excellent 
approximation of a highly nonlinear system. The 
fuzzy logic on its own can prove to be problematic 
in selecting a correct fuzzy set to model a system or 
a fault [28]. However, its combination with a 
genetic algorithm (GA) can provide an effective 
automated procedure for designing a system based 
on the fuzzy logic since a GA is a very good search 
method. A combination of an ANN and a GA is 
presented in [21] where the first one is used to 
estimate the engine internal health and the second 
one is used for sensor bias detection and estimation. 
This approach exploits the ANN capability of 
estimating the behaviour of a strongly nonlinear 
system while improving the measurement 
robustness through a GA application. 

A Mixture of an ANN, a KF, a statistical 
analysis and Bayesian/Evidence based decision 
making has improved the accuracy and the quality 
of diagnostics in [23] for an aircraft gas generator. 
This approach can be extended to improve assets 
management, predicting a machine component's 
life, work scopes, and inventory requirements.  
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A combination of the empirical mode 
decomposition (EMD) method and an adaptive 
neuro-fuzzy interface system (ANFIS) model is 
proposed in [39]. The article describes how features 
are extracted from a signal using the EMD method 
and later analysed by the ANFIS model. 
 
8. VIBRATION MONITORING 

 
The vibration measurement system relies on a 

set of probes (displacement and velocity probes or 
accelerometers) and input conditioning modules to 
provide detailed information on equipment 
operation. Historically vibration amplitudes were 
measured at various locations (bearings, gearbox, 
engine shaft, engine case) and compared with alarm 
and shutdown thresholds [8]. 

With decomposition algorithms, a waveform 
data can be analysed in more depth. Three main 
categories are: time-domain analysis, frequency-
domain analysis and time–frequency analysis [29].  

 
8.1. Time-domain analysis 

The methods from the first group mentioned 
above extract characteristics from time waveforms 
such as mean, peak, peak-peak, standard deviation, 
root mean square etc. Time Synchronous Average 
is a popular and simple technique which calculates 
a signal average of raw signal samples to remove or 
reduce noise, enhancing signal’s interesting 
components. Another more advanced time-domain 
analysis found in literature is an autoregressive 
moving average method which models a signal 
using the following expression: 
 

  (3) 

In the above equation,   is the analysed signal   
…  and  …   are coefficients and , 

...   are white noise error terms. By 
extracting these coefficients, signal features can be 
obtained. A comparison between the regular Fast 
Fourier Transform (FFT), Higher Order Spectra, 
and Autoregressive (AR) has been done in 30 on an 
electric motor with a broken bar and the AR model 
was exhibiting the best accuracy rate. However, as 
it is suggested in [29], problem with AR or 
autoregressive moving average models is difficult 
to solve due to the complexity of modelling, 
particularly in establishing the order in the model. 
Other time-domain methods exist, however, shall 
not be discussed here since this paper is not dealing 
with vibration diagnostics in greater detail.  
 
8.2. Fourier analysis 

The frequency-domain analysis converts time-
domain data into frequency-domain data and allows 
to build a correlation between a particular 
frequency and a fault signature. The most popular 
algorithm is a FFT. This signal decomposition 
method allows conversion between the time and 

frequency domain and vice versa, using the well-
known Fourier transform (FT) method. Series of 
sine waves are subtracted from the original signal 
depending on their phase frequency and amplitude, 
and a spectrum is created. The most common 
methods are: power spectrum, frequency filters, 
envelope analysis and side band structure. The 
shortcoming of this method is a limitation on a 
signal, which can be transformed. It has to be 
stationary and linear (as combinations of all 
decomposed signals are periodical sine waves). 

 
8.3. Time-frequency analysis 

To overcome the stationarity limitation of the 
FFT, the Short Time Fourier Transform (STFT) 
method has been introduced which allows 
investigating a time-varying signal by moving a 
time window through this signal [31]. Since in a 
short duration the signal does not change 
significantly, it can be considered as stationary. 
However, the method lacks adaptivity due to a 
fixed length of the time window. If a better location 
in time of a higher frequency component is needed, 
the time window should be narrowed but on the 
other hand, to locate a lower frequency the window 
should be widened. Due to the Heisenberg 
uncertainty principle, the finest time location and 
the best frequency resolution cannot be reached at 
the same time. This transform is only suitable for 
quasi-stationary signals as small changes in 
frequency can be missed. For the health diagnostics 
of rotating equipment, the following methods 
quoted below are more suitable. 

 
8.4. Wavelet analysis 

Analogous to the STFT method, a signal is 
decomposed in a time window but a significant 
difference lays in the adaptive length of it and the 
form of wavelet which is used. Unlike in the STFT 
method where time-frequency distributions are 
used, in the Wavelet Analysis we have time-scale 
representations of the signal. This method has been 
widely used in the equipment fault diagnostics due 
to its ability to detect transient features, often 
related to abnormalities in rotating machinery. The 
adaptivity of this method makes it suitable for 
nonstationary signals [32]. For a higher frequency, 
the time window is made narrower allowing a good 
time location of the frequency component. 
However, a lower frequency resolution is achieved 
for a lower frequency but as a result, a better 
resolution of frequency is established with a poorer 
location in time. This is a trade-off between a 
frequency location in time and resolution. To 
overcome this issue, the Wavelet Packet Transform 
method was developed which works by 
decomposing a signal into multiple quasi-bands and 
decomposing them iteratively, leading to a better 
time and frequency resolution for all bands. There 
is a difficulty in selecting the most suitable wavelet 
to match the signature of a signal. 
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The Continuous Wavelet Transform (CWT) 
method in a vibroacoustical diagnostics of a 
gearbox operated with variable speed is 
investigated in [37] confirming CWT good ability 
to deal with the signal signature detection for faults 
and an ability to work under non-stationary 
conditions where often a single abnormality can 
have an amplified effect. 

The advantage of the wavelet analysis over the 
FT method is presented in [38] where authors 
investigate the loose blade detection in a gas 
turbine. The CWT method can detect the number 
and positions of faulty blades which is never 
possible by using only the FT method. 

 
8.5. Wigner-Ville Distribution and pseudo-

distributions 
The Wigner-Ville Distribution (WVD) is one of 

the oldest time-frequency analysis methods. It 
offers a high time-frequency resolution nevertheless 
it suffers from cross-term interferences and 
spectrums can have frequencies with negative 
energy. The Cohen's class distribution [34] is a 
modified method which allows maintaining high 
time-frequency resolutions while suppressing the 
cross-term interferences of the WVD method at the 
expense of the reduced time-frequency resolution. 

Lockhed-Martin company uses the WVD 
method to monitor a gas turbine [35], used for 
marine applications where an early fault detection 
can prevent a catastrophic failure. The WVD 
method analyses vibration amplitudes of the turbine 
components once–per–revolution. This method has 
been used in damage detection of the helicopter 
transmission [36]. It has been demonstrated that the 
WVD analysis of the signal average (with no 
filtering or enhancement) was able to reveal prior to 
the failure. 

 
8.6. Hilbert-Huang Transform 

This method is relatively new. It uses a 
combination of the Empirical Mode Decomposition 
and Hilbert-Huang Transform (HHT) methods [39–
40] to conduct an adaptive non-parametric time-
frequency analysis. There are two main steps in 
HHT algorithm: the first is to compose a set of 
Intrinsic Mode Functions (IMF) by finding extrema 
(minimum and maximum values in a signal) and 
linking them with cubic splines and determining a 
mean value in the created envelope. The created 
trend is then subtracted from the original signal and 
repeated until stop criteria are met; the second step 
is to apply the Hilbert transform to each IMF which 
what allows the computation of the instantaneous 
frequency. 

The EMD method cannot decompose a 
narrowband multi-harmonic signal and the first 
IMF can cover too wide range of the harmonics. 
These issues can be overcame by using adaptive 
band-pass filters and the Wavelet Packet Transform 
as pre-processors of the HHT [40]. The second 
problem is the mode mixing when a single IMF can 

cease to have a physical meaning by itself, 
suggesting falsely that there is a physical process in 
signal. To overcome this issue, it has been proposed 
to add the white noise to the signal to provide a 
uniform reference frame in the time-frequency 
space, thereby force to exhaust all possible 
solutions in the EMD sifting process. This method 
is called Ensemble Empirical Mode Decomposition 
[40]. 

The advantages of this method are algorithms 
simplicity and ability to deal with both 
nonstationary and nonlinear signals. Low 
computing requirement makes this method very 
suitable for online health monitoring of systems, 
which requires data to be processed in real time. 

 
8.7. Vibration monitoring summary 

In more advanced processing of vibration data, 
they can be decomposed in real time by the time-
frequency analysis paving the path for detection of 
incipient faults before they develop into a failure. 
Vibration analysis can expose excessive wear and 
tear of internal machinery components. 
Analysing vibration data of an engine requires both 
frequency and time domain [32]. Time localization 
is particularly important to detect phenomena of 
short duration and multi-frequency components that 
shift in time. For comprehensive "real-time" 
vibration analysis, it is worth to consider more than 
one method at the same time. For instance, the FFT 
algorithm can be effective in extracting frequencies 
with the highest vibration amplitudes while the 
shaft rotates at constant speed. As this analysis 
allows an easy correlation of frequencies and gas 
turbines’ health (e.g. relation between the first 
harmonic frequency and the speed). On the other 
hand, the Wavelet Analysis and the HHT allow 
decomposing nonstationary signals which are 
dominant during changes in speed of an engine. 
 
9. CONCLUSION 
 

Research work focused on increasing both the 
availability and the reliability of rotating equipment 
has been done in the last couple of decades. In the 
early 1980's, it was proposed to focus maintenance 
regimes on reactions rather than on predictions (“If 
it ain't broke, don't fix it”) or time-based intervals. 
There has been extensive research done in order to 
understand processes of gas turbines' performance 
degradation and their causes, and how they can be 
predicted using GPA. Incipient faults, which can 
occur prior to a major system failure, can be 
isolated using a GPA or vibration analysis. A 
combination of different sensors used for 
registering such parameters as the vibration level of 
bearings and their temperatures can improve fault 
detection at an earlier stage than when it is done 
using only one sensor measurement. Data can be 
analysed by a pre-programmed expert algorithm 
that does the troubleshooting of a problem 
remotely. Advances in creating data acquisition 
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systems, such as increased measurement resolutions 
and larger storage capacities in hard drives, at a 
little extra cost allow gathering vast amounts of 
data. This information can now be processed more 
rapidly with higher computing performance 
allowing a combination of different methods in 
order to minimise their drawbacks while combining 
their strengths. 

 
REFERENCES 
 
1. Jaw LC. Recent advancements in aircraft engine 

health management (EHM) technologies and 
recommendations for the next step. Proceedings of 
GT2005 ASME Paper GT 2005-68625. 
http://dx.doi.org/10.1115/GT2005-68625  

2. Boyce MP, Meher-Homji CB, Wooldridge B. 
Condition monitoring of aeroderivative gas turbines. 
Gas Turbine and Aeroengine Congress and 
Exposition, Toronto, Ontario, Canada, 1989, ASME 
Paper No. 89-GT-36. http://dx.doi.org/10.1115/89-
GT-36  

3. Tsalavoutas A, Aretakis N, Mathioudakis K, Stamatis 
A. Combining advanced data analysis methods for 
the constitution of an integrated gas turbine condition 
monitoring and diagnostic system. Proceedings of 
ASME Turbo Expo 2000, Munich, Germany. 2000, 
ASME Paper No 2000-GT-0034. 
http://dx.doi.org/10.1115/2000-GT-0034  

4. Rausand M. Reliability centered maintenance. 
Reliability Engineering and System Safety 1998;60: 
121–132. https://doi.org/10.1016/S0951-
8320(98)83005-6  

5. Diakunchak IS. Performance deterioration in 
industrial gas turbines, international gas turbine and 
aeroengine congress and exposition. Orlando, 
Florida, 1991, ASME Paper No 91-GT-228. 
https://doi.org/10.1115/91-GT-228  

6. Kurz R, Brun K, Wollie M. Degradation effects on 
industrial gas turbines. ASME J. Eng. Gas Turbines 
Power. 2009; 131: 62401. 
https://doi.org/10.1115/1.3097135  

7. Kurz R, Brun K. Gas Turbine Tutorial-Maintenance 
and Operating Practices Effects on Degradation and 
Life Proceedings of 36th Turbomachinery 
Symposium, 2007. https://doi.org/10.21423/R15W7F  

8. Wong M. L. D, Jack L. B, Nandi A. K. Modified self-
organising map for automated novelty detection 
applied to vibration signal monitoring. Mechanical 
Systems and Signal Processing 20, 2006, 593–610. 
http://dx.doi.org/10.1016/j.ymssp.2005.01.008  

9. Brotherton T, Jahns G, Jacobs J, Wroblewski D. 
Prognosis of faults in gas turbine engines. Aerospace 
Conference Proceedings. IEEE, 2000; 6:18–25163–
171. https://doi.org/10.1109/AERO.2000.877892  

10. Chiang LH, Russell EL, Braatz RD. Fault detection 
and diagnosis in industrial systems. London, 2001. 
http://dx.doi.org/10.1007/978-1-4471-0347-9  

11. Luo J, Namburu M, Pattipati K, Qiao L, Kawamoto 
M, Chigusa S. Model-based prognostic techniques, 
proceedings of the IEEE Autotestcon, 2003:330–340. 
http://dx.doi.org/10.1109/AUTEST.2003.1243596  

12. Li YG, Nilkitsaranont P. Gas turbine performance 
prognostic for condition-based maintenance. Applied 
Energy 86, 2009, 2152–2161. 
https://doi.org/10.1016/j.apenergy.2009.02.011  

13. Mathioudakis K, Stamatis A, Tsalavoutas A, Aretakis 
N. Performance analysis of industrial gas turbines for 
engine condition monitoring. Proc. Inst. Mech. Eng., 
Part A. J. Power Energy. 2001;215(A2):173–184. 
https://doi.org/10.1243/0957650011538442  

14. Stamatis A, Mathioudakis K, Papailiou KD. Adaptive 
simulation of gas turbine performance. ASME J. Eng. 
Gas Turbines Power. 1989;112:168-175. 
http://dx.doi.org/10.1115/1.2906157  

15. Luppold RH, Roman JR, Gallops GW, Kerr LJ. 
estimating in flight engine performance variations 
using-kalman filter concepts. 25th Joint Propulsion 
Conference, Joint Propulsion Conferences, 1989. 
http://dx.doi.org/10.2514/6.1989-2584  

16. Cybenko G. Approximation by superpositions of a 
sigmoidal function, mathematics of control. Signals 
and Systems. 1989; 2(4):303–314, Springer. 
http://dx.doi.org/10.1007/BF02551274  

17. Pong-Jeu L, Ming-Chuan Z, Tzu-Cheng H, Zhang J. 
An evaluation of engine faults diagnostics using 
artificial neural networks. J. Eng. Gas Turbines 
Power. 2000;123(2): 340-346. 
http://dx.doi.org/10.1115/1.1362667  

18. Lazzaretto A, Toffolo A. Analytical and neural 
network models for gas turbine design and off-design 
simulation. Int. J. Appl. Thermodynam. 2001;4(4): 
173-82. 

19. Boccaletti C, Cerri G, Seyedan B. A neural network 
simulator of a gas turbine with a waste heat recovery 
section. ASME Turbo Expo 2000 Munich, Germany, 
May 8–11, 2000, ASME Paper No 2000-GT-0185. 
http://dx.doi.org/10.1115/2000-GT-0185  

20. Dominiczak K, Rządkowski R, Radulski W, 
Szczepanik R. Online prediction of temperature and 
stress in steam turbine components using neural 
networks. J. Eng. Gas Turbines Power. 2016;138(5), 
ASME Paper No: GTP-15-1396. 
http://dx.doi.org/10.1115/1.4031626  

21. Kobayashi T, Simon DL. Hybrid neural-network 
genetic-algorithm technique for aircraft engine 
performance diagnostics. Journal of Propulsion and 
Power. 2005;21(4): 751-758. 
http://dx.doi.org/10.2514/1.9881  

22. Kanelopoulos K, Stamatis A, Mathioudakis K, 
Incorporating Neural Networks into Gas Turbine 
Performance Diagnostics, 1997, ASME paper, 97-
GT-35. http://dx.doi.org/10.1115/97-GT-035  

23. DePold HR, Gass FD. The application of expert 
systems and neural networks to gas turbine 
prognostics and diagnostics. Trans. ASME, J. Eng. 
Gas Turbines Power. 1999; 121: 607 –612. 
http://dx.doi.org/10.1115/1.2818515  

24. Volponi AJ, DePold H, Ganguli R, Daguang C. The 
use of Kalman filter and neural network 
methodologies in gas turbine performance 
diagnostics: a comparative study. ASME Turbo Expo 
2000 Munich, May 8–11, 2000, ASME Paper No. 
2000-GT-0547. http://dx.doi.org/10.1115/1.1419016  

25. Ogaji SOT, Singh R. Advanced engine diagnostics 
using artificial neural networks. Applied Soft 
Computing 3 (3), 2003, 259–271. 
http://dx.doi.org/10.1016/S1568-4946(03)00038-3  

26. Yang X, Pang S, Shen W, Lin X, Jiang K, Wang Y. 
Aero engine fault diagnosis using an optimized 
extreme learning machine. International Journal of 
Aerospace Engineering. 2016, Article ID 789287. 
http://dx.doi.org/10.1155/2016/7892875  

27. Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S. 
Fault diagnosis of an industrial gas turbine using 



DIAGNOSTYKA, Vol. 19, No. 2 (2018)  
Adamowicz M, Żywica G.: Advanced gas turbines health monitoring systems 

87 

neuro-fuzzy methods. IFAC Proceedings 2002;35(1): 
471-476. http://dx.doi.org/10.3182/20020721-6-ES-
1901.01632  

28. Verma R, Roy N, Ganguli R. Gas turbine diagnostics 
using a soft computing approach, Applied 
Mathematics and Computation. 2006; 172(2): 1342-
1363. http://dx.doi.org/10.1016/j.amc.2005.02.057  

29. Jardine AKS, Lin D, Banjevic D. A review on 
machinery diagnostics and prognostics implementing 
condition-based maintenance. Mechanical Systems 
and Signal Processing. 2006; 20(7): 1483-1510. 
http://dx.doi.org/10.1016/j.ymssp.2005.09.012  

30. Poyhonen S, Jover P, Hyotyniemi H. Signal 
processing of vibrations for condition monitoring of 
an induction motor. First International Symposium 
on Digital Object Identifier. 2004: 499–502. 
http://dx.doi.org/10.1109/ISCCSP.2004.1296338  

31. Al-Badour F, Sunar M, Cheded L. Vibration analysis 
of rotating machinery using time–frequency analysis 
and wavelet techniques. Mechanical Systems and 
Signal Processing 2011; 25(6): 2083-2101. 
http://dx.doi.org/10.1109/ISCCSP.2004.1296338  

32. Peng ZK, Chu FL. Application of the wavelet 
transform in machine condition monitoring and fault 
diagnostics: a review with bibliography. Mechanical 
Systems and Signal Processing. 2004;18(2):199-221. 
http://dx.doi.org/10.1016/S0888-3270(03)00075-X   

33. Aretakis N, Mathioudakis K. Wavelet analysis for 
gas turbine fault diagnostics. Journal of Engineering 
for Gas Turbines and Power 1997;119:870-6. 
http://dx.doi.org/10.1115/1.2817067  

34. Feng Z, Liang M, Chu F, Recent advances in time–
frequency analysis methods for machinery fault 
diagnosis: A review with application examples. 
Mechanical Systems and Signal Processing. 2013; 
38(1):165-205. 
http://dx.doi.org/10.1016/j.ymssp.2013.01.017  

35. Harrison GA, Koren I, Lewis M, Taylor FJ, Meltzera 
G, Dien NP. Application of wavelet and Wigner 
analysis to gas turbine vibration signal processing. 
Proceedings of SPIE on Wavelet Application. 1998; 
3391:490-501. http://dx.doi.org/10.1117/12.304898  

36. Samuel PD, Pines DJ. A review of vibration-based 
techniques for helicopter transmission diagnostics. 
Journal of Sound and Vibration. 2005; 282(1–2): 
475-508. http://dx.doi.org/10.1016/j.jsv.2004.02.058  

37. Meltzer G, Dien NP. Fault diagnosis in gears 
operating under non-stationary rotational speed using 
polar wavelet amplitude maps. Mechanical Systems 
and Signal Processing 2004;18(5):985-992. 
http://dx.doi.org/10.1016/j.ymssp.2004.01.009  

38. Hee LM, Leong MS. Diagnosis for loose blades in 
gas turbines using wavelet analysis. J. Eng. Gas 
Turbines Power. 2005;127(2):314-322 
http://dx.doi.org/10.1115/1.1772406  

39. Leia Y, Hea Z, Zia Y, Hua Q. Fault diagnosis of 
rotating machinery based on multiple ANFIS 
combination with Gas. Mechanical Systems and 
Signal Processing. 2007;21(5):2280-2294. 
http://dx.doi.org/10.1115/1.1772406  

40. Lei Y, Zuo MJ. Fault diagnosis of rotating machinery 
using an improved HHT based on EEMD and 
sensitive IMFs. Measurement Science and 
Technology, 2009;20:125701- 125712. 
http://dx.doi.org/10.1088/0957-0233/20/12/125701  

41. Peng ZK, Tse PW, Chu FL. A comparison study of 
improved Hilbert–Huang transform and wavelet 
transform: Application to fault diagnosis for rolling 
bearing, Mechanical Systems and Signal Processing, 

2004, 19: 974–988. 
http://dx.doi.org/10.1016/j.ymssp.2004.01.006  

42. Vachtsevanos G, Lewis FL, Roemer M, Hess A, Wu 
B. Intelligent fault diagnosis and prognosis for 
engineering systems, 2006. 
http://dx.doi.org/10.1002/9780470117842  

 
Received 2018-01-09 
Accepted 2018-04-04 
Available online 2018-04-09 
 

Marcin ADAMOWICZ, received 
M. Sc. Degree in Control 
Engineering from Gdańsk University 
of Technology in 2009. Now works 
in Solar Turbines S.A. as Field 
Service Representative. His current 

research interest includes Fault Detection Analysis, 
Signal Processing and Artificial Neural Networks. 
 

Grzegorz ŻYWICA, PhD, Eng. 
Since 2005 has been working at the 
Institute of Fluid Flow Machinery, 
Polish Academy of Sciences in 
Gdańsk. He is the Head of the 
Department of Turbine Dynamics and 
Diagnostics. His scientific work 
focuses on: computational simulation, 

designing of rotating machinery and bearing systems, 
rotor dynamics, modal analysis and technical diagnostics.  
 


